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CANONICAL FORMS AND UNIFICATION

Jean-Marie Hullot
INRIA and SRI International

Abstract
Fay has described in. 12,31 a complete T.unlncaton for equational theories T that possess.

a complete set of reductions as defined by Knuth and Bendix 1121. This algorithm relies essen-
tially on using the narrowing process defined by Lankford 113). In this paper we first study the
relations between narrowing and unification and we give a new version of Fay's algorithm. We
then show how to eliminate many redundancies in this algorithm and give a sufficient condition
for its termination. Finally, we show how to extend the previous results to various kinds of
canonical term rewriting systems.

1. Introduction.

In this paper we are interested in unification problems that arise in equational
theories. More precisely, we study the case of an equational theory T that may be em-
bedded in a complete set of reductions (or canonical term rewriting system) A as defined
by Knuth and Bendix 1121. Let us write -+ the reduction relation associated to A and
R(M) the (unique) -+-normal form of any term M. A decision procedure for T-equality
is known via --*-normal form:

M =r N 4* R(M) = R(N).

We would like also to be able to solve equations in T, that is to T-unify two given terms;
this is quite a difficult problem. Take for instance the canonical term rewriting sytem
reduced to the single equation:

I(I(2, u),Z) -+ f (X,(, )).

Solving equations in the corresponding equational theory is the problem of associative
unification, which has only recently shown to be decidable by Makanin 1211.

A general result has been obtained by Fay, who describes in 12,31 such a process to
resolve equations in T. This algorithm is not, in general, a decision procedure for T-
unification since termination of the process is not ensured. However one can organise
this algorithm so that it can be used as a semi-decision procedure for T-unification in
the following sense: if the two terms are unifiable, then a solution will be found in a
finite time. Moreover, Fay has shown that this algorithm produces a complete set of T-
unifiers. Improvements on Fay's algorithm have been given by Lankford. An analogous
result has been found by Huet who has given in (41 a unification algorithm for X-calculus
that relies essentially on the existence of a canonical form for X-conversion.

In this paper we shall present a new version of Fay's algorithm. In a second step
we shall eliminate many redundancies in our algorithm and sufficient conditions will be
given to ensure its termination.

• A1
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New kinds of canonical term rewriting systems have been defined by Lankford and
Ballantyne [16,17,181, Huet 16,71 and Peterson and Stickel 1241. Fay conjectures in (3J
that his algorithm extends to the case of permutative reductions 1171 and Lankford and
Ballantyne use such an extension for associative and commutative theories in the ap-
pendix of 1191. We shall give in this paper extensions of Fay's algorithm for Huet's and
Peterson and Stickers canonical term rewriting systems.

2. An overview of first order terms.

We briefly survey first order terms. Our definitions and notations are consistent
with those of Huet 16) and Het and Oppen (9).

2. 1. First order terms.

Let V be a denumerable set of elements called variables, and C a finite or denumerab-
le set of elements called constants with V n C = 0. Elements in C are graded by an arity
function a: C i-.+ X where Xi is the set of integers. The set of terms T is the smallest set
containing V and closed by the operations:

MI,,... , Mo ,.f- , V

for every f in C. If a(f) - 0, we abbreviate f0 in f. For every M in T, v(M) will
denote the set of variables of M.

2.2. Substitutions.

Definition. A substitution is a mapping a from V to V with a(z) = x almost everywhere.
Substitutions are classically extended as morphisms of T. For every substitution 0, we
define the set of variables affected by o or domain of a by D(a) = {xal(z) 9 xa) and the
set of variables introduced by a by 1(a) = U e (.) V(a(z)). For V C V, we define the
restriction of a to V by (a I V)(z) = a(z) if z E V and (a t V)(x) = z otherwise.

We define the preorder < of subsumption in r by M <_ N v4 3a a(M) = N.
If such a a exists, its restriction to V(M) is unique and we call it the match of N by
M. Finally, we define M M N 4* M < N & N < M, = is variable renaming. We
extend < to substitutions by: a < a' o Vx v(x) 5 o'(x).

We say that two terms M and M' are unifiable iff' 3a a(M) = o(M). Let us
denote by /,(M, M) the set of all unifiers of M and MA. If two terms are unifiable, then
there exists a minimum unifier, that is 3a E Uo(M, M), VO E Uo(M, M"), a <9 . This
element is unique up to variable renaming and may be found by the unification algorithm
15,22,23,27j. Furthermore, note that it is always possible to impose to the minimum
unifier a the condition D(a) n i(a) = . We will always choose such a minimum unifier.
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2.3. Occurrences.

In order to deal formally with the subterms of a term we define the occurrences (i.e.
- sequences of integers) denoting an access path in a term. Let N. be the set of finite

sequences of positive integers, A the empty sequence and the operation of concatenation
on sequences. The elements of N+ are called occurrences and we denote them by u, v, w.
The set of occurrences is partially ordered by the prefix ordering: u -< v €* 3w v =
u. win this case, we define v/u = w. If u 2< v and v 2 u we say that u and v are
disjoint, and we write u I v. Finally, we define u -< v if" u --< v and u 9 v. For any
term M, we define its set of occurrences O(M) as a finite subset of N, as follows:

(i) AE 0(M),
(ii) uEO(Mi)= i-uEO(F(M1,...,M)) Vi 1:_<i<n.

If u E O(M), we define the subterm of M at u as the term M/u, and for every/M

the replacement in M of M' at u as the term M[u +- M'I, by:

(i) MIA =M.(i) (Ma,.... M.)/#. -- M,/,,
(iii) MIA 4- M'J = M',
(iv) F(MI,..., M,)[i. .u- M' = P(Mi,..., Mdiu -- M'j,..., M,).

To distinguish between variable and nonvariable occurrences we define U(M) as
{u E 0(M)I M/. 9 V), and I r(M) = {U E O(M)IM/. E V).

3 Reduction, narrowing and unification.

We call an equation any pair of terms. An equation will be denoted. by M = N.
Let T be any finite set of equations. We define the relation -- r on T as the compatible,
stable, symmetric closure of T. We define the equality in the equational theory T or T-
equality to be the congruence generated by T, that is --. It will be denoted by =r.
Example. The equational theory of groups is generatcd by the set of equations:

3 + (-X) ;
(X + V) + 8 X : + (Y +sa).

We are interested in unifying terms in the equational theory T; given two terms
M and M', we shall say that a substitution a is a T-unifier of M and M if a(M) =r
o(M'). Ur(M, M') will denote the set of all T-unifiers of M and M'. When dealing
with ordinary unification, we have seen that two unifiable terms have a minimum unifier.
This is no longer the case with T-unification. However, this notion generalizes to the
one of a complete set of T-unifiers 14,5,251.

3
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Definition. Let M and M' be two terms and W be a finite set of variables containing
V = V(M) U V(M). We say that a set of substitutions S is a complete set of unifiers
of M and Mt ' away from W iff:

(i) VvEZ D(a)CV & I(a)nW=,
(ii) z C UiIM,M'),
(iii) VOEUr(M, M) 30ED 0< ojVi,

where <T is the preorder defined on r by M <T M ifl M' =T o(M) and <r IV) is
the following extension of < to substitutions: a < o' IV1 if" there exists a substitution
p such that o'(x) =r p(o(z)) for all z in V. CSUT(M, M', W) will denote the set of all
such Z. In addition Z is said to be minimal if" it satisfies the further condition:

(iv) Vaa'EE ay#o' aTdo'IV.

A discussion of general properties of a complete set of unifiers may be found in 15).
Note that the introduction of the set W is motivated by technical reasons: it is a way
to avoid conflicts when choosing new variables.

A T-unification algorithm is complete if it generates a complete set of T-unifiers
for all T-unifiable input terms. Complete unification algorithms are known for various
theories including commutativity, associativity 1251, idempotence 126), associativity and
commutativity 1291, associativity commutativity and idempotence 1201, and abelian group
theory 1141. Note that we do not require any termination property.

A very general result for T-unification problems has been obtained by Fay, who
describes in 12,31 such a T.unification algorithm in the case where the equational theory
T may be described by a complete set of reductions as defined by Knuth and Bendix
1121. We recall that a term rewriting system P. is a set of pairs of terms -1k -+ 61, such
that V (-.) C V(6h). We say that term M -+ia-reduces to term N at occurrence u and
we write M -+t N iff:

3'y-4ER 3a 3uEO(M) M/u = ONO & N = Mu .- a(6,).

Sometimes we will write: M -j,{ N. We say that a term M is in -'t-normal form iff

AN, M --,t N. If M -+I N and N is in -at-normal form, we say that N is a -'+t-
normal form of M. We say that a substitution a is in -- a-normal form iff Vz E D(a),
a(s) is in -+ -normal form.

A term rewriting system R is said to be a complete set of reductions or a canonical
term rewriting system ifl:
(a) -+it is ncetherian, that is, there does not exist infinite derivation M, -+ Ma...

(b) --'i is confluent, that is VM, M1 , M2, such that M "'a M, and M -4 Ma then
3M' such that M, -4 M' and M2 -4 M.
Note that if R is a canonical term rewriting system, each term M admits a unique

-t a-normal form we shall denote by R(M). Thus a decision procedure for T-equality is
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known via this normal form. More precisely, we have:

M -=TN *NR (M) = R(N).

Knuth and Bendix give in 1121 a way to decide if a finite and noetherian term rewriting
system R is canonical. A detailed study may also be found in 161.

It is not possible to define a canonical term rewriting system for a theory T which
includes, for instance, a commutativity axiom (condition (a) never holds with such an
axiom). Different ways have been proposed to extend the notion of canonical term
rewriting systems as we shall see in section 5.

Our aim in this section is to give a new version of Fay's algorithm.
Notation. -+ will be --* i where A is any canonical term rewriting system defining an
equational theory T.

3. 1. Narrowing.

The basic idea in Fay's algorithm is to combine ordinary unification and "narrowing."
Informally narrowing a term is applying to it the minimum substitution such that the
resulting term is not in -+-normal form and then reducing it one step. Slagle 1281 first
noticed the difficulties arising when working with terms that are 'narrowable" and thus
considered in his work only sets of clauses which are fully 'narrowed." Lankford in (131
was first to show the interest of the iteration of narrowing and to give applications of
such a "narrowing procedure." We define below a relation on r we call the narrowing
relation. A step of derivation using this relation is very close to the notion of Lankford's
immediate narrowing.

Definition. Let M be a term and V be a finite set of variables containing V(M). Assume
there exists a nonvariable subterm of M, say MI, which is unifiable with the left part
of some rule 8h, 6J in R. More formally:

3u E U(M), 3,y, -- 6,% E ,, UO(M/u. -1) 7 0,

where we assume y, --+ ,, is renamed so that V(Y,) n V - o.
Let a be the minimum unifier of M - M/u and yk. We say that a is a narrowing
substitution of M away from V. NS(M, V) will denote the finite set of such substitu-
tions.
Let us now consider the term M obtained from a(M) in replacing a(M) by ov(j,), that
is:

= o(M)U .+- (51,)) = (MjU +- 4)).

We say that M ia narrowable in M' at occurrence u using rule -1y, , and we write:

AV+ is called the narrowing relation on r.

5



Netation. Sometimes we will abbreviate , in JV,,,,I or "AVrl..
Remark 1. Note that our definition is not exactly the one used by Lankford, Fay or
Slagle. More precisely, we do not assume that M is normalized and we do not normalize
Mt , so that we have:

The motivation behind this modification is that we want to express very precisely cor-
respondences between reduction and narrowing in order to find sufficient conditions
ensuring the termination of the narrowing process.
Remark 2. The condition V(Yk) n V = 0 ensures that a(M) is reducible by -. using

-t, - . Note that M may contain variables that are not in V; these variables come
from V(yIk). In the next section, where we study the iteration of the narrowing process,
we will have to make explicit the renaming of variables of the Y,,'s at each step of the
iteration so as to avoid conflict between the names of all these "new" variables. In
practice, the problem is simplified by using the GENSYM operator of LISP for instance.
Example. Let us consider the following canonical term rewriting system 2:

R = {/(z,z) - z),
and the term M = f (zl, f'(YI, Z1)). M is narrowable at occurrence A since it is unifiable
with f(z, z):

MA. AJI(YU, :),o = {(z,-I(va,,)),(:, 4-I(vs, ,))},
and at occurrence 1 for the subterm f(yl, z,) is unifiable with f (z, z):

* M ,~1~f~, ),o = .- z), (a, 4- z)}.

Remark 3. Let us now return to the initial problem we were interested in: given two
terms P and Q, find a substitution a such that:

o(P) =T o(Q), (1)
or equivalently:

R(aP)) = R(o(Q)). (2)
Assume the problem has a solution, say a, then there are two cases: either a is a unifier
of P and Q in the usual sense in which case one can find a minimum unifier of P and Q
by using the unification algorithm. Or a does not unify P and Q, in which case at least
one of a(P) and o(Q) is -+-reducible, since otherwise it would be impossible to have (2).
In this case at least one of P and Q is narrowable.

3.2. Narrowing and reduction.

Using the notations of remark 3 of the previous section, the equivalence between (1)
and (2) gives a particular interest in the study of -.- derivation issuing from o(M) where
a is any substitution and M is any term. The aim of the following theorem is to show
how one can make correspond any such derivation to a .AV-derivation and conversely. In
other words, we shall show that any --*-derivation issuing from o(M) may be *projected"
on a -\.-derivation issuing from M. And, conversely, any JA.*-derivation issuing from
M may be considered as the "projection" of a certain class of -+-derivations.

6



Theorem 1. Let M be any term, V be a finite set of variables containing V(M), and
q be a normalised substitution with 0(?) g V(M). Consider any -*-derivation issuing
from v (M):

,(M) = No - N., 1  't,,, N 3 - (...-i,,,,-,,.i- N,. (1)

There exists an associated 44t*-derivation issuing from M:

= Mo'A.,,o0 ,k,, oo 44'(",,,,.,M/,". ,, ,-, Ma, (2)

and for each i, 0 < i < n, a substitution qj and a finite set of variables V such that:

(J) D(ip) C V,,
(ii) 17 is normalized,OR) (n T v)- (,o, T V),
(iv) t,(M,) N.,

where Go = c and Oj+ = 04+10i.
Conversely, to each JV+-derivation (2) and every q such that 0, < 11 V], we can

associate a -+-derivation (1).

As usual, the motivation behind the introduction of the V is technical: it is a way to
avoid conflicts between "new" and initial variables. As one can see in the following proof,
it is not totally trivial to deal in a mathematical way with this problem of renaming. In
a sense we have to give all the details of a 'garbage-collecting* process.

Proof. = By induction on i. For i = 0 it is obvious, taking qO = q and Vo = V U 0(q).
Let us assume (i) to (iv) hold for i.
Since , we have:

3a a(q,)= M,/ ,

where 11,, is renamed so that D(o) "lV5 = 0.
From assumptions (ii) and (iv) for i, we get ui E 0(M,) and therefore:

'q,(mI") = ('Y,).

Let us consider p - q U a. We have:

P(M,/U) =P( A,),

and thus:
M,"' Is,,,81,,ad M,+ ,

where a5 is the minimum unifier of M/u,+ and 'y,. We have o < p, and thus there
exists a substitution q' such that p = q'o,. Therefore:

1, = ((q'o,) t v).

m7ai
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Now, let:
V,+, = (Vi U I(c,)) - D(m),

and:

qli+1=' TVi+1.

We get (i) and:
9i = (9,+,a,) T V. M*

(Remember that we impose D(m.) n r (m) = 0.)
Now, let us consider z in V+,. There are two cases:

a) x E I(o); then 3y E D(rqi) such that z E V(ai(y)), and tji(y) = l +1(oi( )) normal-
ized implies ri/+i(z) normalized.

b) otherwise o.(z) = z since zf'P(a.+i) and therefore ,i,+,(z) = iqj(z) is normalized,
which proves (ii).

We now assume (iii) for i:

q T V = 1,, T V,
and show it for i + 1. From (*) above, we get:

(17A). T V = ((('+,o,) T V,)O,) I V.

From the definition of 0j, we get 1(0i) A 1 and V C V. U D(9,). The above expression
simplifies therefore to:

( ,+oiG1) t V = .T V,

proving (iii).

Finally we get easily V(Mi) C V, from which we get:

'i+i(A,+i) = 1P+iai(M,[u, +- 61J) = 17i(M lui+e 6k.-+j) =N,+,

proving (iv).
Note that because of (iii) every 0, t V is normalized.

4-- Conversely, let us consider any - f\-derivation (2) and any substituticn q such that
0. _V IJV]. Let p be such that q T V = (pG,,) T V. We define substitutions 171 for
O < i < n - 1 by:

i = pon,""i,

and substitution ,. as being p. With N = fi7(Mi), it is easy to show by induction on i,
that:

q(M) = No "1,&o,1o. N, -IiiihiJ N2 -- ... "-i--.k--ij Na.

Now:
No = no(Mo) = qo(M) = =l?39(M) =

since V(M) V, which establishes the 4-part. U

8



3.3. Narrowing and unification.

In this section we describe a nondeterministic T-unification algorithm. Before giving
this algorithm, we prove two key lemmas about the connection between narrowing and
T-unification.

Let us consider two terms P and Q. In order to find T-unifiability properties of
these two terms we will have to iterate the narrowing process on both P and Q in
parallel. It will simplify matters to iterate the narrowing process on the single term
M = H(P, Q) where H is a "new" function symbol, that is H 0 C, playing the r6le of
cartesian product.

In lemma 1, we show how to combine narrowing and ordinary unification to build
T-unifiers. This lemma will show the correctness of the unification algorithm.

Lemma 1. Let us consider any -Al- -derivation:

M = H(P, Q) = Mo-A M = H(Pi, Q1)Ae.. 1. M, = H(P, Q n),

such that P,, and Q, are unifiable, say by substitution a. Then aG,, is a T-unifier of P
and Q, where On is the composition of substitutions along the derivation, as defined in
theorem 1.

Proof. Using the 4- part of the previous theorem with ql = p,, we can associate to this
I.V-derivation the following -+-derivation:

On(M) = No -+N -4 N 2  - N = H(V ,N

and thus, we have:
e,,(P) -. ' NP & 0,,(Q) -e NQ.

Moreover, since q,, = c in this case, we have:

NP=P,, & NQ= Q,,

thus:
a0(P) =T 0 (Q)

since these two terms are -.- reducible to the same term.

In lemma 2 we show that any T-unifier may be reached in such a way. This lemma
will be used when showing the completeness of the T-unification algorithm.

Lemma 2. Let P and Q be two terms that are T-unifiable, p be any T-unifier, and V
be a finite set of variables containing V(P) U V(Q). Then there exists a .- derivation:

M = H(P, Q) = Mo'\s* M = H(P, Q)A *... M -Ar-M H(P,, Q.),

such that P. and Q,, are unifiable. Let i be the minimum unifier of P and Q,, we
have:

T p IV] .



Moreover, we are allowed to restrict our attention to JIV*.-derivations such that: Vi, 0 <
i < n, 0, T V is normalized.

Proof. We have p(P) =r p(Q) thus with q/ = R(p), where (R(p))(z) = A(p(z)),
/(P) r=T q(Q) that is these two terms have a same normal form which we call R. Then

we have:
q (M) = H(ij(P), q(Q)) = No -, ...- , N, = H(R,R).

The corresponding A4 .-derivation is such that:

fl(W") = H(73 (P), ".(Q.)) = N. = H(R, R).

Thus q,, is a unifier of P, and Q,. Let j be the minimum unifier, we have: 3f fj =q,
therefore:

(gO, T V) = (q.0. T V) = (Y J V) =T (P T V),

that is:
140. <T P VJ

which proves the lemma. E
We are now ready to describe how to build a complete set of T-unifiers for two

terms.

Theorem 2. Let T be the equational theory defined by a canonical term rewriting sys-
tem R. Let P and Q be two terms, M be H(P, Q) where H is a new function symbol
(H 0 C), and V be a finite set of variables containing VI(M). Let E be the set of all
substitutions a such that a is in E iff there exists a Ay*-derivation:

M = H(P, Q) = MooAM, = H(Pi, QI 4,e -. .AVM,, = H(P,,, Q,,),

such that P., and Q,, are unifiable, 0,, is normalized, and a = pG,, where it is the min-
imum unifier of P. and Q,,. Then Z, is a complete set of T-unifiers of P and Q away
from V.

Proof. Lemma 1 proves consistency and lemma 2 proves completeness. I
A T-unification algorithm follows from the construction of theorem 2: enumerate all

elements of S. Essentially this algorithm is the same as Fay's; however we do not nor-
malize terms at each step. Note that although this set may be infinite, one can organize
the enumeration so that if two terms P and Q are T-unifiable, then a T-unifier will be
produced in a finite number of steps. Thus this algorithm gives a semi-decision procedure
for T-unifiability. In the following section we shall study how to refine this algorithm so
as to eliminate redundancies. Moreover, a sufficient condition for the termination of the
construction will be given.

Note also that this algorithm does not enumerate a minimal set of unifiers (even
when such a set exists, as one can see in the example of associativity). We will give an
example in section 5 where a complete and finite T-unification algorithm is known and
the algorithm described here does not even terminate.

10
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4. Elimination of redundancies.

In this section we are interested in eliminating some redundancies in the construc-
tion of theorem 2. To achieve this aim we shall restrict our attention to special -AV*-

derivations. Since we have seen in theorem 1 that any AV-derivation issuing from M
is the "projection" of a -+-derivation issuing from ,i(M) such that i is normalized, we
shall first give a particular property verified by all such -*-derivations.

Definition. Let us consider a term N and a set of occurrences U of a proper prefix of
N (e.g. U -- (M), for some M < N). We define by induction what it means for a
derivation:

N = No -' o,koJ N, "-ikii "" -i&.,s_1,kl N,

to be based on U, and we construct sets of occurrences U, C O(Ni), 0 < i < n, as
follows:

* the empty derivation is based on U, and Uo = U,

* if the derivation above is based on U, then the derivation obtained from it by adding
one step Ni-,,.,] Ni+z is based on U iff ui E L4, and in this case we take:

U,+, = (Ui - (v E Ulu, _ v)) U (u, -lv E O( 6AJ)}.

This definition is quite technical, but the practical meaning is easy to understand.
Consider, for instance, the following term rewriting system:

f(h(z)) -, h(z); (r1)

h(h(z)) - ; (r2)

h(q) -*a. (r3)

We consider terms M - h(f(z)) and N = h(f (h(a))) that is N o(M) with o(z) -

h(a). Note that o is not normalized (see lemma 3 below). In order to be based on O(M),
a derivation issuing from N must not affect a(z). For instance, the following derivation
using rule (r3) is not based on -UX:

N = h(f(h(a))) -+ h(f(a)).

Thus, it must affect a subterm that has a prefix in M; for instance, the following step
of reduction using rule (ri):

N = h(f'(h(a))) -+ h(h(a)).

Since the affected subterm was f(h(a)), the definition says that we can iterate these
considerations with M1 = h(z), N, = h(h(a)) and vl(z) = h(a). Thus, the only way to
go on is:

h(h(a)) -+ a.

Let us now give a lemma showing our interest in derivations based on a set of occurrences.

11



Lemma 3. Let N = v(M), with t normalized. Every --+-derivation from N is based on5(m).

Proof. Obvious. i

Definition. A .\.-derivation:

is said to be basic iff it is based on U(M) (in the same sense as in the previous definition
for -+-derivation).

Let us now consider the A *-derivation:

M = M 0 .k09 @0 )*1M M2  iv,1-i.koq,- - I M

associated by theorem 1 to any -+-derivation:

q(M) = N o N, ""l,,I.Sl N2 -a ... ".,.-. 1 ,,.-,.1, N.,

such that q is normalised. Because of lemma 3 this -+-derivation is based on U(M),
and since the sets U are the same for the -+-derivation and the .'V+-derivation it follows
easily that the considered AJa-derivation is basic. Thus, we have:
Theorem 3. The A .-derivations constructed in the =*-part of theorem I are all basic.

As a corollary of theorem 3 we can now give a refined version of theorem 2:

Theorem 4. Theorem 2 holds if we consider only basic AV.-derivations.

The main interest of this theorem is that we can give a sufficient condition for the
termination of the narrowing process when we consider only basic A'*-derivations and,
therefore, for the termination of the corresponding T-unification algorithm.

Proposition 1. Let ,q = - 6 be a canonical term rewriting system such that any
basic .!y-derivation issuing from any of the it's terminates. Then any ,V-derivation
issuing from any term terminates.

Proof. Let us consider any basic AV-derivation:

M = Mo0yarj 10oM1AV. .

The basic idea underlying the proof is the following: at each step of the derivation, either
ui comes from 6(M) and such an occurrence may be used only one time, or this step of
derivation "is part" of some Ay*-derivation issuing from a A. More formally, we define
sets of occurrences 9 by:

1+1- (9i - {ulu E 91 & ui -< u)) if ui E 91 and 91+ - 91 otherwise.

12



We also define sets Mi. Each element of a Mi will be a pair whose left part is an occurrence
u and whose right part is an integer n(u). For each 7i -4 6s E 2 we define integer nh. to
be the maximal length of a derivation issuing from 6k.

* lbo --- 0,

* if ui i , 1i+ = (N,- {(u,n(u))IuE 4 & u,-< u)U ((uinj,)},

9 otherwise let us consider the following sequence of occurrences in Ni:

1 0= A, •is ... , ' =V Uj.

Since uifZ.i, there exists an integer q such that vq E 9i and Vq+I '. . In this case,
we define: M+1 = (X)-{(vq+,n(vq+a))))U{(u+,n(q+l)-1)} (note that vq+1
is an uj with j i).

Along the lines of the definition of basic A.-derivation, it is easy to prove that, if a right
part of a couple in one Mi reaches value 0, then no more narrowing will be possible under
the corresponding left part occurrence. Moreover, one of the two following situations
occurs:

(a) either J9 +11 < 19i., IM.+1I _5 P41, + 1,

(b) or 19j+11 = 191, P4,+I 1- 141l, and the right part of one of the elements of )( has
decreased from 1.

Thus situation (a) may occur only 9o times in the derivation. Then we have Vi, 4jj <
l9o. It is then easy to prove the termination, using the decreasing of the integers in
situation (b). 1

Proposition 2. If the hypothesis of proposition 1 holds, the construction of theorem 4
leads to a complete and finite T-unification algorithm.

Example 1. In the case where all right parts of the rules of a canonical term rewriting
system are variables, the previous proposition obviously applies. This is the case for the
idempotency law alone. However, in this case, a more powerful (because it is minimal)
complete and finite T-unification algorithm is known 1261.

Example 2. Another example is quasi-group theory, which can be defined by the follow-
ing set of equations:

(X/Y) *g = X; (&2)

\ (a * = (.3)

(a*• I = Z. (.4)
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This set of equations can be embedded in a canonical term rewriting system R, as shown
in [iIl:

Z *(, \Y) (r1)

(x/v)*-* X;(r2)

z\(sy)-o Y; (r3)

(X*f) Y ; (r4)

(X/y) X ; (rS)

: / (u \ z) -. p. (r6)

Thus, we obtain the first known complete and finite T-unification algorithm for quasi-
group theory. Note that our result applies in the same way to all particular quasi-group
with identities studied by Hullot in Ili].

Example 3. This example is from Lankford 115). Let us consider a theory T defined
by a finite set of ground equations. In this case, using a lexicographic ordering to show
the finite termination property, it is always possible to build a canonical term rewriting
system from the equations. Moreover, since the right parts of the resulting rewrite rules
are ground, no AV*-derivation is possible from these terms. Thus, the narrowing process
is finite and the construction of theorems 2 and 3 is a quite elegant way to solve equations
in such theories. We have implemented this equation-solver as a LISP program.

5. Extensions.

Under certain conditions it is possible to define canonical term rewriting systems on
equivalence classes of terms modulo permutations. This has been done for commutativity
by Lankford and Ballantyne 1161, for associativity and commutativity by Lankford and
Ballantyne 1181 and Peterson and Stickel 1241. In the case where the term rewriting
sytem is left, linear Huet 16,7J has given general results. In this section we will extend
the results of sections 3 and 4 to all these cases.

Let T be the equational theory defined by T t £ U R where R is a term rewriting
system and t is a set of equations verifying:

v(',) £ V(7) = V(6).

In this entire section we assume the existence of a complete t-unification algorithm.
We shall study three cases according to the three methods known to extend Knuth and
Bendix's results.

First we shall study the case where R is a canonical term rewriting system modulo
=C (Huet [61), that is -+i is netherian in the quotient structure by =C, and -#i is
confluent modulo =C, e.g. VM, M2, M , M'2, such that M, =g M2 and M, --,4 M'
and M2 - M,, then 3M', M" such that M, "4 M", Ms, -4 & M and MJ " =t
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M'*. Note that it t-equality is decidable, a decision procedure for T-equality is known:
M = M, iff A(M) =C R(Mr).

For the two other cases, we have to define a new relation on r:

that is: to achieve one step of -.. , to a term M, one has to Aind any term t-equivalent
to M which is -+ia-simpliflable and then to achieve one step of -*ia-reduction. We define
also a new notion of canonical term rewriting system: we say that R is a canonical term
rewriting system over t iff -#. is netherian and --.a is confluent over =C, that is YM,
M1, M&, such that M -#L M, and M -4L. M2, then 301, A4 such that M, -. #L.,
and Mz -*. M2 and MWI =: M's. Note that in the case where t-equality is decidable
and -+.simplifiability is decidable and 9 is a canonical term rewriting system over =,C
we have a decision procedure for T-equality: M =,r Md' iff R..(M) =C R..(M') where
R.(M) is a -. ,-normal form of M which is unique modulo =,t.

One difficulty with this approach is the need of a decision procedure for -.

sirnplifiability. In the case where all equivalences classes under =C are finite, such a
decision procedure is easily obtained by generating the equivalence class of a term and
by checking -# a-simnplifiability on each element of this class. This is the way used by
Lankford and Ballantyne when dealing with permutative reductions 116,17,181.

Another way is given by Huet in ITI. We first give a definition.

Definition. -*it~ is said to be =e-uniform if:-

M -+itN & M - cAe'* 3M M' -*iN'.

Proposition. Assume -aj is _- -uni'orm, then for any term M, M is -e.,-reductible iff
M is --..reductibl.

Proof. Obvious fl
H-utt gives in ITI a way to decide, for any finite left linear term rewriting system A

and any finite set of equations t having decidable C-equality if R is a canonical term
rewriting system over .

Another way has been introduced by Peterson and Stickel [241. The idea is to
extend --. a in a new relation --*t aC.

Definition. We say that M -'tN if:.

3'7 -+5ER 30 3u EO(M) M/ =t (7) N =Mju - ()j

Note that -+it~-simplifiability is decidable when A is finite, if T-matching is deci-
dable. We define now a new notion of uniformity.

Definition. -. C is said to be C-uniform iff'

YM, N M--o. .N *3P M-' P.



Proposition. Assume -+t is f-uniform, then for any term M, U -...- simplifiablo 'iff
M - *,,c-simplifiable.

* PFroof. Obvious C

Peterson and Stickel give in 1241 a way to decide if A is a canonical term rewriting
system over t in the case where there exists a complete C-unification algorithm and A
is *t M -compatible' which condition is stronger than C-uniform.

We shall extend our results to the throe following cases:
(1) R~ is a canonical term rewriting system modulo =g-
(2) A is a canonical term rewriting system over =c and .-#a is =C-uniform.
(3) A is a canonical term rewriting system over =c and -*a,r is f-uniform.

For cases (1) and (2) we will use the same notion of narrowing as in the previous sec-
tion. For case (3) we shall define a new definition of narrowing using -# a~c instead of
--*t. Note that this notion of extended narrowing has been introduced by Lankford and
Ballantyne 1ig, in the case of associative commutative derivations. We generalize the
result to all cases covered by Peterson and Stickel's paper 1231 and prove the correctness
of this new T-unification, process.

Note that we extend theorems 1 and 2; however, it is possible to extend results of
section 4 as well.

5.1. Extension to cases (i) and (2).

Lemma 4 (reip. 5) is an analogue of lemma 1 (resp.2). We use the same notations:
P and Q are two terms, H is a "new" function symbol and M is H(P, Q).
Lemma 4. Let us consider any Ay.#.derivation:

M = H(p, 9)M*VI#Ma = H(p1 , QI)AV*... Ms = H(P.. Q.).

such that P. and Q. are f-unifiabie, say by substitution a. Then .* is a T-unifier of
P and Q.

Proof. The proof closely follows that of lemma 1.

Lemma S. Les P and Q be two torms that wre T-uifiabl, je be &Vy T-unifer and V be

a finite set of waisbies containing V(P) U 11(Q). Thea there exists a Aq.-derivatioft:

M = H(P, Q) =Mo-*V*M1  H(Pa. QI)4 , - A. = H(P..,Q.)

such that P. and Q. are t -unifiabe. Let E7 be any complete se offt-unifers of P. and
Q. away from V U V.. We have:
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Moreover, we are allowed to restrict our attention to 'V.-derivations such that: Yi, 0 <
i < n, Gj t V is normalised.

Proof. We have p(P) =T p(Q) thus with q = R(p), (P) =r '(Q). Let us consider a
derivation from q(M) to one of its normal forms:

q(M) = H(q(P), q(Q)) = No - ... -* N. = H(Np, NQ),

where Np is a -+-normal form of q(P) and NQ is a -+-normal form of ri(Q). In the two
cases we are studying, we have then Np =( N0 . For the corresponding AV*-derivation
we have:

q.(M.)= H(q.(P), ,.(Q.)) = N. = H(Np, NQ).

Thus, ,. is a t-unifier of P. and Q,. Let Z be any complete set of t-unifiers away from
V U V.. We have: 31sE T (vuv.) <€q. T (vuYv),

then:
3j (,) T (V u V.) T(V u V),

thus:

(R'.) t V = ((C) T (V U V.))(O. T V) =C ((q. t (V U V,))(0. T V) (17,0, 1 V)

and:

0.0. T V) = (n t V) =r (P 1 V).

that is:
5. <w pIVj,

which proves the lemma. r

We can now give an analogue of theorem 2:

Theorem S. Let T be the equational theory defined by T = R U t where R is:

" either a canonical term rewriting system modulo =t,
* or a canonical term rewriting system over =t such that - i is --- uniform,

and t is a set of equations defining an equational theory in which a complete (-

unification algorithm is known.
Let P and Q be two terms, M be H(P, Q) where H is a new function symbol (H if

C), V be a finite set of variables containing V(M). Let E be the set of all substitutions
a such that a is in S ifr there exists a AV-.derivation:

M = H(P,Q) = MoAV M, = H(P, Q)AVoM. = H(PR,Q,),

such that P. and Q. are t-unifiable, 0, is normalised and a = . where ju is any
element in a complete set of (-unifiers of P. and Q,. away from V U V.. Then S is a
complete set of T-unifiers of P and Q away from V.

Proof. Lemma 3 proves consistency and lemma 4 proves completeness. I
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5.2. Extension to case (3).

A is a canonical term rewriting system over =c and -, a,€ is t-uniform. In this
case, we need to define a new notion of narrowing.

Definition. Let M be a term and V be a finite set of variables containing V(M). Assume
the following situation holds:

3u E 0 (M) 3 7Ya -+ j E A Ut(M/u, Y,, W) 7 0,

where we assume 7, -- , is renamed so that v(Yi,) n v = 0 and W, is a finite set of
variables containing V(,y,) U V.

Let Z' be any complete set of (-unifiers of M/u and y, away from Wit, then. each
element of E will be called (-narrowing substitution of M away from V. NSc(M, V)
will denote the set of all such substitutions.

Let N be the term a(Mfu -- 6,j) where a is any substitution in E. We say that
M is* t-narrowable in M at occurrence u using rule -+ 6,t and we write:

Ate is called (-narrowing relation on T.

Notations. We will use all notations of section 3. In particular Ayj.c-derivations are
defined in an obvious way.

Theorem 6. Theorem I holds if we replace -- derivation by ..-i C,-derivation and ..-
derivation by AV# i-derivation.

Proof. The proof follows closely the one of theorem 1, we do not give it. U
It is now easy to prove lemmas 4 and 5 where narrowing is replaced by t-narrowing.

Finally we give an analogue of theorems 2 and 5.

Theorem 7. Let T be the equational theory defined byT = RUt. t is a set of equations
defining an equational theory in which a complete (-unification algorithm is known. 2
is a canonical term rewriting system over =e such that -. € is t-uniform. Then the
result of theorem 5 holds where (-narrowing is used instead of narrowing.

Example. We give an example in abelian group theory. In this case £ will be the set
of two equations defining the associativity and commutativity of +. We list below a
canonical term rewriting system for abelian group theory:

X+0-:; ( r)

, + (-X) -. 0; (r2)

-0 -0 0; (r3)
-(-X)- 2; (r4)

-(X + Y) -. (-X) + (-v). (rs)
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This example appears in [24,18). Note that we need to consider extended rules only for
rule (r2):

z + (-Z) + V -4 Y. (er2)

With this rule C-compatibility is ensured (see 123J), and t-uniformity follows.

Lankford has proposed to orient rule (r5) from right to left. In this case we obtain
another complete set of reductions for abelian groups. Rules (rl) to (r4) are the same,
the others are:

(-z) + (-Y) - -(z + ); (rS')

-((-z) + Y) - z + (-u); (r6')
z + -(Y + Z)--' (-Y). (r')

In this case we need to consider extended rules for rules (rW) and (r'), that is:

(-Z) + (-) + z -- (+ ) + Z; (ers')

+ -(Y + Z) + z - -+ Z. (eV7')

As in the previous example, t-compatibility and t-uniformity are then ensured.
Let us now consider term M, = -z (this example is from Lankford). We show

that there exists an infinite Aec-derivation issuing from MI, even if we restrict ourself
to basic AV#C-reduction, as one can define in the same way as basic A4 -reductions. We
begin with the first term rewriting system . Mi is (-unifiable with the left part of rule
(r6), a = {(zl 4- z + yi)} being a unifier. Thus, we have (after renaming):

MI = -Z1 -'. M2 = (-2) + (-g).

In the same way, using subterm -Z2 we have:

M 2 = (-X2) + (-Y,)vM3 = (-Z3) + (-YI) + (-2),

and more generally:

M.= (- ) + (-Yi) +. + (-Y,-,)A M.,,+,

showing the existence of an infinite -Ayr-derivation. Note that we have used only basic
J'rc-derivations.

When dealing with the second term rewriting system, consider rule (r6'). We build
the infinite derivation:

M,= -: M' (-Z,) + Yf...-. -AV" . = (-:,) + 3+-" + 1,1-.

Thus, none of these two canonical term rewriting systems leads to a finite T-unification
algorithm with the methods described in this paper. However, there exists a complete
and finite T-unification algorithm for abelian group theory as shown by Lankford 1141.
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Remark. Ballantyne and Lankford have shown in [1 how to solve the word problem for
finitely presented commutative semigroups by using associative and commutative term
rewriting systems. Thus one could be interested in solving equations in commutative
semigroups using the method described in this section. However, we cannot expect to
show termination of the algorithm because some of these equations have infinite sets
of independent unifiers. Let us for instance consider the associative and commutative
equational theory defined by ab = a and let us try to unify az and a where z is a
variable. It is easy to show that z - b, z +- bb, x +- bbb, ... are independent unifiers.
(This example was communicated to the author by A.M. Ballantyne).

6. Conclusion.

We have shown in this paper how to improve upon Fay's T-unification algorithm.
In particular, we have given a sufficient condition for the termination of this algorithm,
proving a refined version of a conjecture by Lankford. Furthermore we have shown how
to extend Fay's algorithm to equational theories defined by various kinds of canonical
term rewriting systems.

7. Acknowledgments.

We thank G. Huet for his help in writing this paper and R. Shostak for his many
helpful comments.

& References.

1. Ballantyne A.M. and Lankford D.S., New Decision Algorithms for Finitely Pre-
sented Commutative Semigroups. Report MTP-4, Department of Mathematics,
Louisiana Tech. U., May 1979.

2. Fay M., Firat-order Unification in an Equational Theory. Master Thesis, U. of
California at Santa Cruz. Tech. Report 78-5-002, May 1978.

3. Fay M., First-order Unification in an Equational Theory. 4th Workshop on
Automated Deduction, Austin, Texas, Feb. 1979, 161-167.

4. Huet G., A Unification Algorithm for Typed Lambda Calculus. Theoretical
Computer Science, 1,1 (1975), 27-57.

5. Huet G., R6solution d'6quations dans des langages d'ordre 1,2,.. ., w. Thtse
d'Etat, Universitd de Paris VII, 1976.

6. Huet G., Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems. 18th IEEE Symposium on Foundations of Computer Science
(1977), 30-45.

7. Huet G., Embedding Equational Theories in Complete Sets of Reductions. Unpu-
blished manuscript, 1979.

8. Huet G. and Ldvy J.J., Call by Need Computations in Non-Ambiguous Linear
Term Rewriting Systems. Rapport Laboria 359, IRIA, Aoit 1979.

20

'~t



9. Huet G. and Oppen D.C., Equations and Rewrite Rules: a Survey. In "Formal
Languages: Perspectives and Open Problems.' Ed. Book R., Academic Press 1980.

10. Hullot J.M., Associative-Commutative Pattern Matching. Fifth International
Joint Conference on Artificial Intelligence, Tokyo, 1979.

11. Hullot J.M., A Catalogue of Canonical Term Rewriting Systems. Technical
Report CSL-113, SRI International, April 1980.

12. Knuth D. and Bendix P., Simple Word Problems in Universal Algebrae."Compu-
tational Problems in Abstract Algebra.' Ed. Leech J., Pergamon Press, 1970, 263-
297.

13. Lankford D.S., Canonical Inference. Report ATP-32, Departments of Mathema-
tics and Computer Sciences, University of Texas at Austin, Dec. 1975.

14. Lankford D.S., A Unification Algorithm for Abelian Group Theory. Report MTP-
1, Math. Dept., Louisiana Tech. U., Jan. 1979.

15. Lankford D.S., Private Communication. 1980.

16. Lankford D.S. and Ballantyne A.M., Decision Procedures for Simple Equational
Theories With Commutative Azioms: Complete Sets of Commutative Reduct-
ions. Report ATP-35, Departments of Mathematics and Computer Sciences, U. of
Texas at Austin, March 1977.

17. Lankford D.S. and Ballantyne A.M., Decision Procedures for Simple Equational
Theories With Permutative Azioms: Complete Sets of Permutative Reductions.
Report ATP-37, Departments of Mathematics and Computer Sciences, U. of Texas
at Austin, April 1977.

18. Lankford D.S. and Ballantyne A.M., Decision Procedures for Simple Equational
Theories With Commutative-Associative Azioms: Complete Sets of Commuta-
tive-Associative Reductions. Report ATP-39, Departments of Mathematics and
Computer Sciences, U. of Texas at Austin, Aug. 1977.

19. Lankford D.S. and Ballantyne A.M., The Refutation Completeness of Blocked
Permutative Narrowing and Resol ution. Fourth Conference on Automated De-
duction, Austin, Feb. 1979, 53-59.

20. Livesey M. and Siekmann J., Unification of Sets. Internal Report 3/76, Institut
fur Informatik I, U. Karlsruhe, 1977.

21. Makanin G.S., The Problem of Solvability of Equations in a Free Semigroup.
Akad. Nauk. SSSR, TOM 233,2 (1977).

22. Martelli A. and Montanari U., An Efficient Unification Algorithm. Unpublished
manuscript, 1979.

23. Paterson M.S. and Wegman M.N., Linear Unification. J. of Computer and Systems
Sciences 16 (1978), 158-167.

24. Peterson G.E. and Stickel M.E., Complete Sets of Reductions for Equational
Theories With Complete Unification Algorithms. Tech. Report, Dept. of Compu-
ter Science, U. of Arisona, Tucson, Sept. 1977.

21

"Al



25. Plotkin G., Building-in Equational Theories. Machine Intelligence 7 (1972), 73-
9o.

26. Raulefs P. and Siekmann J., Unification of Idempotent Functions. Unpublished
manuscript, 1979.

27. Robinson J.A., A Machine-Oriented Logic Based on the Res olution Principle.
JACM 12 (1965), 32-41.

28. Slagle J.R., Automated Theorem-Proving for Th&eories with Simplifiers, Commu-
tativity and Associativit. JACM 21 (1974). 622-642.

29. Stickel M.E., A Complete Unification Algorithm for Associative-Commutative
Functions. 4&h International Joint Conference on Artificial Intelligence, Tbilisi,
1975.

22


